Leukemia Immune Escape after Transplantation: Personalized Therapy and New Biological Insights

Luca Vago, MD PhD

Unit of Immunogenetics, Leukemia Genomics and Immunobiology and Hematology BMT Unit San Raffaele Scientific Institute, Milano

Immunotherapy in Hematological Malignancies 2023

3rd Cuneo City ImmunoTherapy Conference (CCITC) Cuneo, May 18-20, 2023

Allogeneic Hematopoietic Cell Transplantation and Relapse

Despite the constant improvement in the outcome of allogeneic Hematopoietic Cell Transplants (allo-HCT), reappearance of the original malignant disease (relapse) remains frequent and largely uncurable

1980-2014 CIBMTR data, adapted from Horowitz, Bone Marrow Transplant, 2018

Relapse Through the Scope of an Immunologist

Post-transplantation relapses may be driven by:

- Disappearance of the most immunogenic clones
- Gain of additional mutations and epimutations conferring immune resistance

Vago, ASH Educational Program Book 2019

Mechanisms of Post-Transplantation Immune Escape

<u>Relapse</u>

Hа

Lactic Aci

<u>Genomic</u>

HLA haplotype loss Vago, NEJM, 2009; Crucitti, Leukemia, 2015; Ahci and Toffalori, Blood, 2017

Non-Genomic

Downregulation of HLA Class II molecules

Christopher, NEJM, 2018; Toffalori, Nat Med, 2019

Upregulation of T cell inhibitory ligands

Toffalori, Nat Med, 2019; Noviello and Manfredi, Nat Comm, 2019

Impairment of T cell metabolic fitness

Uhl, Sci Transl Med, 2020

Searching for Epigenetic Drivers of HLA Class II Downregulation: Experimental Outline

Gambacorta et al, Cancer Discovery, 2022

Reduced Chromatin Accessibility Genomewide and at HLA Genes at Post-Transplantation Relapse

Gambacorta et al, Cancer Discovery, 2022

PRC2 Inhibitors Recover HLA Class II Expression in Relapsed Leukemia

Expression (Z-Score)

Gambacorta et al, Cancer Discovery, 2022

Tailoring the Therapy of Relapse on its Immunobiology

Mechanism

HLA haplotype loss

Downregulation of HLA Class II molecules

Upregulation of T cell inhibitory ligands

Impairment of T cell metabolic fitness

Approach

Second allo-HCT, Bispecific antibodies Vago and Ciceri, BBMT, 2017; Imus, BBMT, 2017; Rovatti, in preparation

Delivery of IFN-y, Epigenetic drugs (PRC2i)

> Rimando, Blood, 2023; Ito, TCT, 2023; Gambacorta, Cancer Discovery, 2022

Immune Checkpoint Blockade

(+ Hypomethylating agents?)

Davids, NEJM, 2016; Penter, Blood, 2023; Apostolova, under review

Rewiring BM metabolome with NaBi

Uhl, Sci Transl Med, 2020

- Provide rationales for the implementation of new therapeutics
- Improve our understanding of fundamental biological questions

Molecular Mechanism and Immunological Consequences of HLA Loss

- Copy Neutral Loss of Heterozygosity of the entire HLA complex (both class I and class II)
- Loss is counterbalanced by duplication of the other haplotype (expression level unchanged)

Vago et al, N Engl J Med, 2009; Toffalori et al, Blood, 2012 Crucitti et al, Leukemia, 2015; Ahci and Toffalori et al, Blood, 2017

HLA Loss Frequency after Haploidentical HCT

Reference	N° of relapse cases	HLA loss frequency	Additional relevant observations
Vago et. al., 2009	17	29%	ATG
Villalobos et al., 2010	3	66.6%	ATG, Pediatric cases
Crucitti et al., 2015	69	33%	Mixed PTCy and ATG, risk factor analysis
McCurdy et al., 2016	2	Case report	РТСу
Grosso et al., 2017	12	50%	РТСу
Muñiz et al., 2021	22	27%	РТСу
Wu et al., 2022	106	50.9%	ATG, includes ALL, risk factor analysis

Rizzello, in preparation

Outline of the HLALOSS Study

Fleischhauer et al, under submission

A Global Effort

Supplementary Table 1. Centers participating in the study.				
Center Code	Center	City	Country	
C01	I.R.C.C.S. San Raffaele Scientific Institute	Milano	Italy	
C02	Hospital Saint Antoine	Paris	France	
C03	Chaim Sheba Medical Centre	Tel- Hashomer	Israel	
C04	Universitätsklinikum Carl Gustav Carus	Dresden	Germany	
C05	Universitätsklinikum Essen	Essen	Germany	
C06	Institut Paoli-Calmettes	Marseille	France	
C07	Universitätsklinikum Freiburg	Freiburg	Germany	
C08	A.O. SS. Antonio e Biagio e Cesare Arrigo	Alessandria	Italy	
C09	Hematology Institute "Lorenzo ed Ariosto Seragnoli"	Bologna	Italy	
C10	I.R.C.C.S. Policlininco Gemelli	Roma	Italy	
C11	I.R.C.C.S. Arcispedale Santa Maria Nuova	Reggio Emilia	Italy	
C12	A.O.U. Careggi	Firenze	Italy	
C15	City Of Hope Comprehensive Cancer Center	Duarte	CA, USA	
C16	Hokkaido University	Sapporo	Japan	
C17	A.O.U. Citta della Salute e della Scienza di Torino	Torino	Italy	
C18	Tor Vergata University	Roma	Italy	
C19	Hospital Universitari i Politècnic La Fe	Valencia	Spain	
C20	Universitätsklinikum Eppendorf	Hamburg	Germany	
C21	Universitätsklinikum Düsseldorf, Heinrich-Heine University	Dusseldorf	Germany	
C22	University of Perugia	Perugia	Italy	
C23	Hospital General Universitario Gregorio Marañón	Madrid	Spain	
C24	Dana-Farber Cancer Institute	Boston	MA, USA	
C25	I.R.C.C.S. Humanitas Cancer Center	Milano	Italy	
C26	Thomas Jefferson University	Philadelphia	PA, USA	
C27	Fred Hutchinson Cancer Center	Seattle	WA, USA	
C28	Kyoto University	Kyoto	Japan	
C29	The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins	Baltimore	MD, USA	

Total number of relapses = 533

Different Donor Types

Clinical Variables Associated to HLA loss

Overall Incidence of HLA loss: 83/533 (15.6%)

Response to Treatments and Outcome of HLA loss Relapses

HLA loss and Donor Type

Why HLA loss Is So Rare After UCB-HCT?

Matched alleles

Haplotype Distribution of Mismatched HLAs

Fleischhauer et al, under submission

New rationale for unrelated UCB and MMUD selection, prioritizing donors with incompatibilities on both haplotypes?

- Allo-HCT is an incredibly **complex system**, and a multitude of variables impact on its immunobiology, also in unexpected ways (type of donor, drugs?)
- This knowledge should impact on the **design of clinical trials** (aim at a biologically meaningful subset of patients rather than wide indications, selecting the appropriate time of intervention)
- More real-life data and AIs might allow to better define drivers/risk factors for the different relapse modalities, anticipating intervention and preventing clinical recurrence (GITMO-RELAPSE study, PI Fabio Ciceri)
- Lessons from allo-HCT will be key to fully exploit the potential of targeted cell therapies and possibly to generate synergistic combinations

Acknowledgements

Cristina Toffalori

Pier Edoardo Rovatti Marco Punta Francesca Tortorelli Annalisa Tameni Angela Andrisani Giorgio Bottinelli Matteo Cristante Angela Gentile Aurora Patelli

Unit of Immunogenetics, Leukemia Genomics and Immunobiology

Francesca Lorentino Matteo G. Carrabba Massimo Bernardi Jacopo Peccatori Fabio Ciceri Hematology and BMT Unit

Chiara Bonini Experimental Hematology Unit

Riccardo Bergamin Salvatore Milite Nicola Calonaci **Giulio Caravagna University of Trieste**

Katharina Fleischhauer Universitatklinikum Essen

All HLALOSS Investigators

